Lesson 4

Random graphs

Sergio Barbarossa
Graph models

1. Uncorrelated random graph (Erdős, Rényi)

N nodes are connected through n edges which are chosen randomly from the \(\frac{N(N - 1)}{2} \) possible configurations.

2. Binomial model (Gilbert model)

Every pair of nodes is connected with probability p.

The total number of edges is a random variable with expected value

\[
p \, \frac{N(N - 1)}{2}
\]
Graph models

One of the most interesting features of random graphs is that there exists a critical probability scaling law $p_c(N)$ such that:

If $p(N)$ grows faster than $p_c(N)$, then almost every graph has property Q (like, e.g., connectivity)

If $p(N)$ grows slower than $p_c(N)$, then almost every graph fails to have property Q

This feature establishes a link with percolation theory
Graph features

Degree distribution

In a random graph with connection probability p, the degree k_i of a node i follows a binomial distribution

$$P(k_i = k) = C^k_{N-1} p^k (1 - p)^{N-1-k}$$

With a good approximation, this is also the degree distribution of a random graph

For large N and infinitesimal p, such that $\lim_{N \to \infty} p(N)N = \lambda$

The degree distribution can be approximated by the Poisson law

$$P(k) \approx e^{-pN} \frac{(pN)^k}{k!}$$
Graph features

Diameter

Def.: The diameter of a graph is the maximal distance between any pair of nodes

Denoting with k_{ave} the average degree

If $k_{ave} < 1$ the graph is composed of isolated trees

If $k_{ave} > 1$ a giant cluster appears

If $k_{ave} > \log N$ the graph is totally connected and the diameter is concentrated around

$$D \propto \frac{\log(N)}{\log(k_{ave})}$$
Clustering coefficient

The clustering coefficient C_i for a vertex v_i is given by the proportion of links between the vertices within its neighborhood divided by the max number of links that could possibly exist between them.

$$C_i = \frac{2|\{e_{jk}\}|}{k_i(k_i - 1)} : v_j, v_k \in N_i, e_{jk} \in E$$

The clustering coefficient for the whole system is the average of the clustering coefficients:

$$\bar{C} = \frac{1}{n} \sum_{i=1}^{n} C_i$$
Centrality of a node

Degree centrality

\[
\frac{d_i}{n - 1}
\]

Closeness centrality

\[
\frac{n - 1}{\sum_{j \neq i} l(i, j)}
\]

where \(l(i, j) \) denotes the number of links in the shortest path between \(i \) and \(j \), or

\[
\sum_{j \neq i} \delta^{l(i,j)}
\]

with \(0 < \delta < 1 \) and \(l(i, j) = \infty \) if \(i \) and \(j \) are not path-connected.
Centrality of a node

Betweenness centrality

\[
\sum_{k \neq j: i \notin \{k, j\}} \frac{P_j(kj)/P(kj)}{(n - 1)(n - 2)/2}
\]

where \(P_j(kj) \) denotes the number of geodesics (shortest paths) between \(k \) and \(j \), that \(i \) lies on, whereas \(P(kj) \) is the number of geodesics between \(k \) and \(j \).
Centrality of a node

Betweenness centrality – Example: fifteenth century Florence

\[BC(\text{Medici}) = 0.522 \]
\[BC(\text{Strozzi}) = 0.103 \]
\[BC(\text{Guadagni}) = 0.255 \]
Spectrum

The spectrum of an undirected graph is the set of eigenvalues of its adjacency matrix

If \(p(N) = cN^{-z} \), with \(z < 1 \), the spectral density converges to the semicircle law (Wigner 1955)

Graph features

- \(N = 100, p = 0.1 \)
- \(N = 100, p = 0.02 \)
Motivation

A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but they can be reached from every other by a small number of hops.

Purely random graphs exhibit a small average shortest path length (varying typically as the logarithm of the number of nodes) along with a small clustering coefficient.

However, many real-world networks have a small average shortest path length, but also a clustering coefficient significantly higher than expected by random chance.
Small-world networks

Watts and Strogatz model:

(i) a small average shortest path length,
(ii) a large clustering coefficient

- starting from a regular graph
- rewiring edges with equal and independent probability p_r

regular small-world (uncorrelated) random

$p_r = 0$ increasing randomness $p_r = 1$
Small-world networks

Watts and Strogatz model

(i) a small average shortest path length,
(ii) a large clustering coefficient

for intermediate values of p_r:

small-world behavior:

- average clustering (C) high
- average distance (L) low
Scale-free networks

The distinguishing characteristic of scale-free networks is that their degree distribution follows a power law relationship defined by

\[P(k) \sim k^{-\gamma} \]

In words, some nodes act as "highly connected hubs" (high degree), but most nodes have a low degree.

The scale-free model has a systematically shorter average path length than a random graph (thanks to the hub nodes).
Scale-free networks

Network building rules (dynamic)

1. The network begins with an initial network of $m_0 (>1)$ nodes

2. **Growth**: New nodes are added to the network one at a time

3. **Preferential attachment**: Each new node is connected to m of the existing with a probability proportional to the number of links that the existing node already has. Formally, the probability p_i that the new node is connected to node i is

 $$p_i = \frac{k_i}{\sum_j k_j}$$

 where k_i is the degree of node i (rich gets richer)
Random geometric graphs

A random geometric graph is a random undirected graph drawn on a bounded region

It is generated by:

1. Placing vertices at random uniformly and independently on the region

2. Connecting two vertices, u, v if and only if the distance between them is smaller than a threshold r

$$d(u, v) \leq r$$
Def.: A graph is said to be \(k\)-connected \((k=1,2,3,...)\) if for each node pair there exist at least \(k \) mutually independent paths connecting them.

Equivalently, a graph is \(k\)-connected if and only if no set of \((k-1)\) nodes exists whose removal would disconnect the graph.

The maximum value of \(k \) for which a connected graph is \(k\)-connected is the connectivity \(\kappa \) of \(G \). It is the smallest number of nodes whose failure would disconnect \(G \).

As \(r_0 \) increases, the resulting graph becomes \(k\)-connected at the moment it achieves a minimum degree \(d_{\text{min}} \) equal to \(k \).
Random geometric graphs

Thm (Gupta & Kumar): Graph $G(n, r_0)$, with

$$\pi r_n^2 = \frac{\log n + c_n}{n},$$

is connected with probability one as n goes to infinity if and only if

$$c = \lim_{n \to \infty} c_n.$$
References
